Stationary random fields with linear regressions ∗

نویسنده

  • Wlodzimierz Bryc
چکیده

We analyze and identify stationary fields with linear regressions and quadratic conditional variances. We give sufficient conditions to determine one dimensional distributions uniquely as normal, and as certain compactly-supported distributions. Our technique relies on orthogonal polynomials, which under our assumptions turn out to be a version of the so called continuous q-Hermite polynomials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bryc’s random fields: the existence and distributions analysis

We examine problem of existence of stationary random fields with linear regressions and quadratic conditional variances, introduced by Bryc [2]. Distributions of the fields are identified and almost complete description of the possible sets of parameters defining the first two conditional moments is given. This note almost solves Bryc’s problem concerning fields undetermined by moments the only...

متن کامل

Generalized Stationary Random Fields with Linear Regressions - an Operator Approach

Existence, L-stationarity and linearity of conditional expectations E [ Xk ∣. . . , Xk−2, Xk−1 ] of square integrable random sequences X = (Xk)k∈Z satisfying E [ Xk ∣. . . , Xk−2, Xk−1, Xk+1, Xk+2, . . . ] = ∞ ∑ j=1 bj ( Xk−j + Xk+j ) for a real sequence (bn)n∈N, is examined. The analysis is reliant upon the use of Laurent and Toeplitz operator techniques.

متن کامل

Nonlinear estimators with integrated regressors but without exogeneity

This paper analyzes nonlinear cointegrating regressions as have been recently analyzed in a paper by Park and Phillips in Econometrica. I analyze the consequences of removing Park and Phillips’ exogeneity assumption, which for the special case of a linear model would imply the asymptotic validity of the least squares estimator for linear cointegrating regressions. For the linear model, the unli...

متن کامل

Stationary Markov chains with linear regressions

In Bryc(1998) we determined one dimensional distributions of a stationary field with linear regressions (1) and quadratic conditional variances (2) under a linear constraint (7) on the coefficients of the quadratic expression (3). In this paper we show that for stationary Markov chains with linear regressions and quadratic conditional variances the coefficients of the quadratic expression are i...

متن کامل

Random Projection-Based Anderson-Darling Test for Random Fields

In this paper, we present the Anderson-Darling (AD) and Kolmogorov-Smirnov (KS) goodness of fit statistics for stationary and non-stationary random fields. Namely, we adopt an easy-to-apply method based on a random projection of a Hilbert-valued random field onto the real line R, and then, applying the well-known AD and KS goodness of fit tests. We conclude this paper by studying the behavior o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001